Laboratories

Our group focuses on developing technology and applications on the combination of optical and optoacoustic microscopy in order to deliver contrast and imaging abilities not available in optical microscopes today. While optical fluorescence microscopy is able to achieve sub-microns resolution even below the diffraction limit in living biological specimens, it is restricted by light scattering to superficial investigations at shallow depths. Optoacoustic microscopy offers absorption contrast, which complements fluorescence signals. Importantly it can be implemented to resolve the origin of ultrasound waves generated in response to short nanosecond-range light pulses propagating through tissue, essentially ‘listening’ to the molecules absorbing light. Acoustic signals scatters less than light in tissues and can enable high resolution imaging at larger depths. Our goal is to merge the advantages of optical and acoustical methods, achieving high resolution imaging at greater depths.

Relevant publications

Pleitez M. A., Khan A. A., Soldá A., Chmyrov A., Reber J., Gasparin F., Seeger M., Schätz B., Scheideler M., Herzig S., Ntziachristos V., Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells, Nat Biotechnol 2020, 38. 293-296.


Ntziachristos V., Pleitez M. A., Aime S., Brindle K., Emerging Technologies to Image Tissue Metabolism, Cell Metab 2019, 29, 518.


Wissmeyer G., Pleitez M. A., Rosenthal A., Ntziachristos V., Looking at sound: optoacoustics with all optical ultrasound detection, Light: Sci & App 2018, 7, 53.


Karlas A., Pleitez M.A., Aguirre J., Ntziachristos V. Optoacoustic imaging in endocrinology, Nature Reviews Endocrinology 2021, 17, 323-335. 


Wong T. T. W., Zhang R., Hai P., Zhang C., Pleitez M. A., Aft R. L., Novack D. V., Wang L. V., Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy, Sci Adv 2017, 3, e1602168.


Pleitez M. A., Hertzberg O., Bauer A., Lieblein T., Glasmacher M., Tholl H., Mäntele W., Infrared reflectometry of skin: Analysis of backscattered light from different skin layers, Spectrochim Acta A 2017, 184, 220-227.


Pleitez M. A., Hertzberg O., Bauer A., Seeger M., Lieblein T., von Lilienfeld-Toal H., Mäntele W., Photothermal deflectometry enhanced by total internal reflection enables non-invasive glucose monitoring in human epidermis, Analyst 2015, 140, 483-488.


Pleitez M. A., Lieblein T., Bauer A., Hertzberg O., von Lilienfeld-Toal H., Mäntele W., In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy, Anal Chem 2013, 85, 1013-1020.